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Wetting under nonequilibrium conditions
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We report a detailed account of the phase diagram of a recently introduced model for nonequilibrium wetting
in (111) dimensions@H. Hinrichsen, R. Livi, D. Mukamel, and A. Politi, Phys. Rev. Lett.79, 2710~1997!#.
A mean-field approximation is shown to reproduce the main features of the phase diagram, while providing
indications for the behavior of the wetting transition in higher dimensions. The mean-field phase diagram is
found to exhibit an extra transition line which does not exist in (111) dimensions. The line separates a phase
in which the interface height distribution decays exponentially at large heights from a superexponentially
decaying phase. Implications to wetting in dimensions higher than (111) are discussed.
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I. INTRODUCTION

Wetting phenomena occur in a large variety of expe
ments, where a planar substrate is exposed to a gas p
under thermal equilibrium conditions. Generally, ‘‘wetting
refers to a situation where a bulk phase (a) in contact with a
substrate coexists with a layer of a different phase (b) which
is preferentially attracted to the surface of the substrate.
changing physical parameters such as temperature
chemical potential, the system may undergo a wetting tr
sition from a nonwet phase, where the thickness of the la
stays finite, to a wet phase, where the layer becomes ma
scopic.

The phase diagram associated with the surface layer c
be rather complex exhibiting a variety of surface phase tr
sitions, prewetting phenomena, and multicritical behav
@1,2#. For example, by increasing the temperatureT while
moving along thea-b coexistence curve, a wetting transitio
may take place at a temperatureTW , beyond which the
thickness of the layer becomes infinite. Usually this tran
tion is of first order, although in certain models the transiti
is continuous, and is then referred to as continuous wett
On the other hand, when the chemical potential differe
between the two phases is varied, moving towards the co
istence curve atT.TW , a different type of transition take
place in which the thickness of the layer diverges. This p
nomenon is known as complete wetting.

In many experimental situations, it is reasonable to
sume that a wetting stationary layer is in thermal equil
rium. In fact, methods of equilibrium statistical mechan
turned out to be very successful in a large variety of theo
ical and experimental studies~for a review, see Ref.@1#!.
Within this approach, a wetting transition is usually cons
ered as the unbinding of an interface from a wall. The int
face configuration is described by a functionh(x) which
gives the height of the interface at pointx on the substrate
One then introduces an effective Hamiltonian of the form@3#

H5E dd21xFs2 ~“h!21V„h~x!…G , ~1!
1063-651X/2003/68~4!/041606~13!/$20.00 68 0416
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wheres is the effective surface tension of thea-b interface,
V(h) is a potential accounting for the interaction between
wall and the interface, andd21 is the interface dimension
In the nonwet phase the potentialV contains an attractive
component which binds the interface to the wall. Assum
thermal equilibrium, the probability of finding the interfac
in a certain configuration is then given by the canonical d
tribution

P@h#;exp~2bH@h# !. ~2!

As the parameters describing the system are varied, the
tractive component of the potential may become weaker
that it is no longer able to bind the interface, leading to
wetting transition.

In order to study wetting phenomena under thermal eq
librium conditions, one usually introduces a stochas
Langevin equation corresponding to the effective Ham
tonian ~1!. This Langevin dynamics should reproduce eq
librium distribution~2! in the limit t→`. Since many differ-
ent dynamical rules may approach the same stationary s
this condition does not fully determine the form of th
Langevin equation. However, assuming short-range inte
tions and keeping only the most relevant terms in the ren
malization group sense, one is led to the Edwards-Wilkins
equation with a potential@4#

]h~x,t !

]t
5s¹2h~x,t !2

]V„h~x,t !…

]h~x,t !
1z~x,t !, ~3!

wherez(x,t) is a zero-average Gaussian noise field with
variance

^z~x,t !z~x8,t8!&52Gdd21~x2x8!d~ t2t8!, ~4!

and a noise amplitudeG5kBT. This Langevin equation ha
the same symmetry properties as Hamiltonian~1!, namely, it
is invariant under translations, rotations, and reflections
space. Apart from the potential term, the equation is a
invariant under shiftsh→h1a and reflectionsh→2h.
Moreover, it can be shown that this type of Langevin dyna
©2003 The American Physical Society06-1
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HINRICHSEN et al. PHYSICAL REVIEW E 68, 041606 ~2003!
ics obeysdetailed balanceand relaxes towards equilibrium
distribution ~2! in the bound phase.

Wetting phenomena may also take place in many syst
under nonequilibrium conditions. For example, in grow
processes such as molecular beam epitaxy or others, a
is grown on a substrate, whose properties depend on
growth conditions. By varying these conditions, one expe
wetting phenomena to take place. Here, unlike the equ
rium case, the dynamics does not obey detailed bala
leading to a rather different class of wetting phenomena.

The simplest way to study nonequilibrium wetting on t
level of the Langevin equation is to introduce a nonline
term in Eq. ~3!, leading to a Kardar-Parisi-Zhang~KPZ!
equation with a potential@5#

]h~x,t !

]t
5s¹2h~x,t !2

]V„h~x,t !…

]h~x,t !
1l@¹h~x,t !#21z~x,t !.

~5!

It is important to note that this nonlinear term is a releva
perturbation of the underlying field theory, i.e., even ifl is
very small, it will be amplified under renormalization grou
transformations, driving the system away from thermal eq
librium.

Recently, a simple solid-on-solid~SOS! model for non-
equilibrium wetting in (111) dimensions was introduce
@6,7#. The model is controlled by an adsorption rateq and a
desorption ratep and exhibits a continuous wetting transitio
at a critical growth rateqc(p). The wetting transition is re-
lated to the unpinning process of an interface from a s
strate and may be described by the KPZ equation~5!. The
model has then been generalized to include a short-ra
interaction between the interface and the substrate@8#. This
was done by introducing a modified growth rateq0 at the
substrate level. This results in a contact interaction betw
the interface and the substrate, which is attractive forq0
,q and repulsive forq0.q. It was found that sufficiently
strong attractive interaction modifies the nature of the w
ting transition, making it first order. In addition, it has be
demonstrated that there exists an extended region in
phase diagram, where the pinned and the moving phaseco-
exist in the sense that the transition time from the pinned
the moving phase grows exponentially with the system s
so that the two phases become stable in the thermodyn
limit. It should be emphasized that this kind of phase co
istence, which has also been observed in the past in o
models@9–12#, can only occur in nonequilibrium systems

Some of these results have been confirmed by nume
and mean-field studies of KPZ type models@13,14#. In par-
ticular, by adding a repulsive interaction between the in
face and the substrate, a crossover from a continuous
first-order wetting transition was found. Nonequilibrium we
ting phenomena have also been studied recently in mode
growing magnetic domains@15#.

In this paper, we present a detailed account of the ph
diagram of the SOS model in (111) dimensions. In order to
get some indication on the behavior of the model in hig
dimensions, we introduce a mean-field approximation for
model and study the resulting phase diagram and the
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namical behavior of the interface. It is found that the mea
field approximation reproduces the main qualitative featu
of the phase diagram obtained in 111 dimensions. In addi-
tion, a new feature is found in the pinned phase. By study
the height distribution of the pinned interface, two distin
types of behavior are discovered upon varying the dynam
parameters of the model: in one regime the distribution
cays superexponentially with the height, while in the oth
the decay is exponential. The two regimes are separated
prewetting transition line. Relevance of this phase diagram
wetting phenomena in dimensions higher than (111) is con-
sidered.

The paper is organized as follows. In Sec. II, we recall
definition of the SOS model and summarize its properti
The special casep51, where the model is exactly solvabl
is discussed in detail in Sec. III. The mean-field approxim
tion, which is the main focus of the present work, is pr
sented and analyzed in Sec. IV. The paper ends with conc
ing remarks in Sec. V.

II. DEFINITION AND PROPERTIES OF THE MODEL

The SOS model defined in Ref.@7# is probably the sim-
plest model which follows the spirit of Eq.~5!. It is defined
on a one-dimensional lattice withN sites and periodic bound
ary conditions, where each sitei is associated with an intege
variablehi describing the local height of the interface. Th
repulsive part of the potentialV(h) is implemented as a
hard-core wall at zero height, restricting the heightshi to be
non-negative. Thushi50,1,2, . . . . Moreover, an effective
surface tension is introduced by imposing the restric
solid-on-solid~RSOS! condition

uhi2hi 61u<1. ~6!

The model evolves randomsequentially by choosing a r
dom site and carrying out one of the following processes~see
Fig. 1!.

~a! Deposition of an atom on the substrate with rateq0:

hi50→hi51. ~7!

~b! Deposition of an atom on top of already deposit
islands with rateq:

hi→hi11 if hi>1. ~8!

FIG. 1. Deposition and evaporation processes in the bulk. At
hard-core wall at zero height~not shown here!, evaporation is for-
bidden and the deposition rateq is replaced by a modified depos
tion rateq0 in order to take the interaction between substrate a
surface layer into account.
6-2



it

ith

n
n
n

w

te

en
er
e.
m
th
e

ee
-

e
es

sl
rit

he
in

ider
s, as
u-

of
tail

-
the
by
an
,

e in
ex-

s-

he
-

o-
b-

g
nd

er-
rt-

ac-
be

ter

he
v-

T

tion
ed if

WETTING UNDER NONEQUILIBRIUM CONDITIONS PHYSICAL REVIEW E68, 041606 ~2003!
~c! Evaporation of an atom at the edge of a terrace w
rate r:

hi→min~hi 21 ,hi ,hi 11!. ~9!

~d! Evaporation of an atom in the middle of a plateau w
ratep:

hi→hi21 if hi 215hi5hi 11.0. ~10!

If the selected process would violate the restrictionshi
>0 or uhi2hi 61u<1, the attempted move is abandoned a
a new sitei is selected. Each attempted update correspo
to a time incrementDt51/N. Since one of the four rates ca
be chosen freely by rescaling time, we setr 51. Thus the
model is controlled by three parameters, namely, a gro
rateq, a desorption ratep, and a special growth rateq0 at the
substrate which accounts for an additional short-range in
action between the substrate and the wetting layer.

The model can be easily generalized to higher dim
sions. Note that in this case it is possible to introduce diff
ent evaporation rates for various types of edge sites,
linear edges and corner sites. For simplicity, we will assu
that all rates for evaporation at edges are equal to 1. In
case, the model can simply be generalized to higher dim
sions by including all nearest neighbors in Eqs.~9! and~10!.

A. Properties for q0Äq

Let us first consider the case without interactions betw
substrate and wetting layer, i.e.,q05q. In this case, the pres
ence of a hard-core wall at zero height leads to acontinuous
phase transition between a bound and a moving phase~see
Fig. 2!. The phase transition lineqc(p) is determined by a
vanishing propagation velocity of a freely evolving interfac
For q,qc the interface moves downward until it fluctuat
close to the wall, while forq.qc the propagation velocity is
positive and the interface detaches from the wall. Obviou
this transition takes place even in finite systems with a c

FIG. 2. Phase diagram of the wetting model forq05q. The
second-order wetting transition is represented as a solid line.
dashed line indicates where the coefficientl of the nonlinear term
in the KPZ equation effectively vanishes. Forp51 the dynamical
rules obey detailed balance~see text!.
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cal threshold depending onN. We note that forp50, where
evaporation from the middle of plateaus is forbidden, t
interface velocity in the bulk cannot be negative so that
this case the transition relies on a different mechanism@6#.

One can easily verify that dynamical rules~7!–~10! do not
generally satisfy detailed balance. To this end we cons
the closed cycle of deposition and evaporation processe
shown in Fig. 3. Let the statistical weights of these config
rations in the steady state bePA ,PB ,PC , and PD . Obvi-
ously detailed balance implies

q2PA5qPB5PC5
q

p
PD5

q2

p
PA . ~11!

These equations can only be satisfied ifp51 ~as already
anticipated,r is assumed to be equal to 1 without any loss
generality!. This special case will be discussed in more de
in Sec. III.

The two parametersp andq can be used to control]V/]h
and l in the KPZ equation~5!. In the case of detailed bal
ance, where a bound interface is thermally equilibrated,
coefficientl is expected to vanish. This can be verified
comparing the propagation velocities of a horizontal and
artificially tilted interface far away from the wall. The line
where both velocities coincide, is shown as a dashed lin
Fig. 2. As expected, it crosses the phase transition line
actly at the pointp5q51, where detailed balance is sati
fied.

Moving away from this point, we can therefore study t
crossover from equilibrium to nonequilibrium wetting. Nu
merical simulations suggested that the transitions forp,1
and p.1 are associated with different sets of critical exp
nents@7#. These findings are in accordance with results o
tained by Muñoz and Hwa@5#, who showed that the scalin
properties of a KPZ interface interacting with a wall depe
on the sign ofl.

B. Properties for q0Ëq

In most experimental applications the wetting layer int
acts with the substrate, giving rise to an additional sho
range force at the bottom layer which may be either attr
tive or repulsive. In the present model such a force can
taken into account by introducing a different growth rateq0
for deposition at zero height. The influence of this parame
was studied in detail in Ref.@8#. Sinceq0 does not influence
the propagation velocity of the interface far away from t
wall, the location of the transition line, along which the mo

he

FIG. 3. Example of a closed cycle of deposition and evapora
processes, showing that detailed balance can only be establish
p51.
6-3
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ing phase is stable, remains unchanged. However, ifq0 is
smaller than a certain thresholdq0* , the attractive interaction
is so strong as to stabilize the bound phase even when
free interface would grow. In other words, for very low va
ues ofq0, there exists an extended region in the phase
gram where the bound and the moving phasecoexistin the
sense that the transition time from the bound to the mov
phase grows exponentially with the systems size. The up
boundary of the coexistence region depends onq0, as shown
in Fig. 4.

A thermodynamically stable coexistence of the bound a
the moving phase requires a robust mechanism which el
nates large protruding islands in the bound phase. In
present model, this mechanism works as follows. Once
island has been formed by fluctuations, the detached pa
the interface quickly grows sinceq.qc . In the phase coex
istence region, where the coefficientl in the KPZ equation is
negative, the island will grow until the slope at the edg
exceeds a critical value, where the growth is compensate
the nonlinear term. Afterwards, the pyramidal island shrin
linearly with time until it is eliminated. Therefore, phase c
existence can only occur under nonequilibrium conditions
those regions of the phase diagram wherel is negative. Very
recently, the tricritical point and the critical behavior
the upper boundary of the phase coexistence region
been investigated in a discretized KPZ equation with
potential@16#.

III. EXACTLY SOLUBLE CASE: pÄ1

A. Detailed balance and transfer matrix approach

We first consider the special casep51, where detailed
balance is satisfied. In this case, the stationary probab
distribution of the bound interface configuration
$h1 , . . . ,hN% is given by the canonical ensemble express
corresponding to an energy functionalH:

P~h1 , . . . ,hN!5
1

ZN
exp@2H~h1 , . . . ,hN!#. ~12!

The partition sum

FIG. 4. Phase coexistence region in the phase diagram for s
values ofq0.
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ZN5 (
h1 , . . . ,hN

exp@2H~h1 , . . . ,hN!# ~13!

runs over all interface configurations obeying RSOS c
straint ~6!. The energyH is given by

H~h1 , . . . ,hN!5(
i 51

N

V~hi !, ~14!

whereV(h) is a potential of the form

V~h!5H ` if h,0

2 ln~q/q0! if h50

2h ln~q! if h.0

~15!

as sketched in Fig. 5. Therefore, Eq.~12! may be rewritten as

P~h1 , . . . ,hN!5ZN
21q(Msi 51

N hi )~q/q0!(( i 51
N dhi ,0

). ~16!

Note that in this expression ln(q) plays the role of the chemi
cal potential differenceDm/kBT between the wetting laye
and the gas phase. Obviously, the transition takes plac
qc51.

To verify the validity of this probability distribution, it is
sufficient to demonstrate that the dynamical rules obey
tailed balance with respect to it. In fact, deposition proc
~8! reduces the probabilityP by a factor ofq, while evapo-
ration processes~9! and~10!, which both take place with the
same rate, increaseP by a factor of 1/q. Consequently, the
probability currents between pairs of configurations comp
sate each other so that detailed balance is satisfied, pro
the validity of the equilibrium ensemble~16!. Similarly one
can show that detailed balance is also satisfied at the bo
layer. We note that these considerations are only valid in
bound phaseq,1, where the probability distribution is sta
tionary. Once the system enters the moving phase, the
cess is out of equilibrium.

The canonical ensemble can be used to compute the
sity profile of a bound interface in the case of detailed b
ance. To this end, we use a transfer matrix formalism int

all
FIG. 5. Schematic drawing ofV(h) with a potential well at zero

height.
6-4
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WETTING UNDER NONEQUILIBRIUM CONDITIONS PHYSICAL REVIEW E68, 041606 ~2003!
duced in Refs.@17,18#, writing the Boltzmann factor exp
(2H) in Eqs.~12! and ~16! as a product

P~h1 , . . . ,hN!5
1

ZN
)
i 51

N

Thi ,hi 11
, ~17!

whereZN5Tr(TN) and

Th,h85H q(h1h8)/2~q/q0!(dh,01dh8,0)/2 if uh2h8u<1

0 otherwise.
~18!

The transfer matrixT is infinite dimensional, acts in spatia
direction, and yields the contribution to the Boltzmann fac
between adjacent sites with the heightsh andh8. Because of
RSOS condition~6!, it has a tridiagonal structure and read

T5S q/q0 q/q0
1/2

q/q0
1/2 q q3/2

q3/2 q2 q5/2

q5/2 q3 q7/2

. . . . . . . . .

. . . . . . . . .

D .

~19!

Using the transfer matrix formalism, the stationary dens
r(h) of sites at heighth can be expressed as

r~h!5ZN
21^huTNuh&, ~20!

where$uh&%, $^hu% denote canonical basis vectors in heig
space. ForN→`, this expression is governed by the large
eigenvalueL of the transfer matrix

Tuf&5Luf&, ~21!

where uf& denotes the corresponding eigenvector. Thus
an infinite system, the stationary densities may also be w
ten as

r~h!5
z^huf& z2

^fuf&
. ~22!

Note that the numerator in this expression is quadratic
uf&, just as in a quantum-mechanical problem.

B. The caseq0Äq

In order to understand how the interface detaches fr
the wall, it is useful to study the scaling behavior of t
density of sites at the bottom layer close to the transit
point. Let us first consider the caseq05q, where interactions
between substrate and bottom layer are absent. Forh.0 the
eigenvalue problem reads

qh21/2fh211qhfh1qh11/2fh115Lfh , ~23!

whereL is the largest eigenvalue ofT andfh are the com-
ponents of the corresponding eigenvectoruf& representing
04160
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t
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n
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n
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the stationary state. Close to criticality we can carry out
continuum limitfh→f(h̃), replacing discrete heightsh by
real-valued heightsh̃. In this limit, the above eigenvalue
problem turns into a differential equation which, to leadi
order ine512q.0, is given by

S ]2

]h̃2
1~32L!23eh̃D f~ h̃!50. ~24!

This differential equation is solved by an Airy function

f~ h̃!5Ai S 3eh̃1L23

~3e!2/3 D . ~25!

Sincef(h̃) has to vanish forh̃<0, we obtain the eigenvalue
L53 so thatf(h̃)5Ai „@3e#1/3h̃…. Therefore, the heights, in
particular the average height and the interface width, scal

^h̃&;w;e21/3. ~26!

Next, we determine the density of exposed sites at the s
strater(0). In the continuum limit of Eq. ~22!, ^0uf& is
proportional tof8(0), hence

r~0!5
1

N @f8~0!#2, ~27!

where N5*0
`dh̃f2(h̃) is a normalization factor. Since

f8(0);e1/3 andN;e21/3, one obtains a linear scaling law

r~0!;e. ~28!

Thus the density of exposed sites at the bottom layer sc
linearly with the distance from criticality, proving that th
wetting transition atp5qc51 is continuous.

Imposing fixed boundary conditionsh15hN50, it is also
possible to study finite-size scaling at the critical pointq0
5q51. At criticality the transfer matrix has a simple stru
ture and can be thought of as generating a simple rand
walk near a wall so that the mean height and the bott
layer density scale as

^h̃&;N1/2, r~0!;N23/2. ~29!

The transfer matrix does not provide any information rega
ing dynamical properties. Numerical simulations~whose de-
tails are not shown here! suggest that an initially flat inter
face at zero height roughens with time~for t!N2) as

^h̃&;t1/4, r~0!;t23/4. ~30!

Assuming standard power law scaling, we can combine E
~26!, ~28!, ~29!, and~30! in the scaling forms,

^h̃~e,N,t !&5N1/2f ~ t/N2,eN3/2!,

r0~e,N,t !5N23/2g~ t/N2,eN3/2!, ~31!
6-5
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where f and g are scaling functions with an appropria
asymptotic behavior. As expected these scaling forms
consistent with the critical exponentsz52,a51/2 of the
Edwards-Wilkinson universality class@4#.

Another interesting aspect is the stationary distribut
P(,) of island sizes, in the bound phase~see Fig. 6!. In the
case of detailed balance, this distribution can be compu
exactly. To this end, we introduce the projection operatoP
512u0&^0u which projects onto states with nonzero heig
Moreover, letQ5PTP be a transfer matrix describing a
interface that does not touch the bottom layer. Obviously
distributionP(,), which may be interpreted as a first-retu
probability of the interface to the bottom layer, is given b

P~, !5
^0uTQ,22Tu0&

^0uT,u0&
.

^0uTQ,22Tu0&

L,
. ~32!

Note that the leftmost column and the topmost row of
restricted transfer matrixQ are zero, while all other matrix
elements are the same as in Eq.~19!. Because of this simple
structure, the spectrum ofQ is just the spectrum ofT multi-
plied by q combined with a zero mode so that the larg
eigenvalue ofQ, which dominates the matrix product in E
~32!, is qL. In the limit ,→`, we therefore obtain an ex
ponential distribution of the form

P~, !;q,. ~33!

Therefore, the average island size scales as

,̄.2
1

ln q
.

1

e
~34!

and diverges at the transition. Sincer(0)51/,̄, this result is
in agreement with Eq.~28!.

In order to determine the stationary interface profiler(h)
in the limit h→`, let us go back to Eq.~23!. By assuming
that the second and the third term on the left hand side ca
neglected, one finds that

fh.
1

L
qh21/2fh21 , ~35!

with the corresponding asymptotic solution

fh;L2hqh2/2. ~36!

Therefore, in the case of detailed balance, the profile o
bound interface decays as a Gaussian for large valuesh.
Even forpÞ1, where detailed balance is violated, numeri
simulations~see Fig. 7! suggest that in (111) dimensions

FIG. 6. (111)-dimensional interface with island size
,1 ,,2 ,S3.
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the entire bound phase is characterized by Gaussian de
profiles.

C. First-order phase transition for small values ofq0

Let us now consider the influence of an attractive for
between substrate and wetting layer by takingq0,q. Obvi-
ously, the interface is bound to the wall forq,1, while for
q.1 it will tunnel through the potential barrier. This mean
that the critical pointqc51 remains unchanged. However,
q0 is decreased below a certain thresholdq0* , the attraction
is sufficiently strong such that the transition becomes fi
order.

To demonstrate the crossover to a discontinuous trans
in the case of detailed balance, we look for a localiz
pinned interface solution at the transition pointq51. As-
suming an exponential interface profile

fh5zh for h>1, ~37!

with some z,1, the eigenvalue problem then reduces
three independent equations

q0
21f01q0

21/2z5Lf0 ,

q0
21/2f01z1z25Lz,

z21111z5L, ~38!

which have the~un-normalized non-negative! solution

f05q0
1/2, z5

A112q023q0
2

2~12q0!
2

1

2
, L5

z11

q0
.

~39!

Consequently, the stationary density of exposed sites at
bottom layer is

FIG. 7. Numerically determined stationary interface profile
the full model in (111) ~lower data points! and (211) dimensions
~upper data points! for different values ofp slightly below the criti-
cal threshold. The bold lines indicate the slopes 2 and 3, res
tively.
6-6
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r~0!5
f0

2

(
h50

`

fh
2

5
q0

q01
z2

12z2

5
11q026q0

21A112q023q0
2

214q026q0
2

, ~40!

while the densities at higher levels are given by

r~h!5
fh

2

(
h50

`

fh
2

5
z2h

q01
z2

12z2

. ~41!

It turns out that the bottom layer densityr(0) is positive for
q0,2/3 and vanishes atq052/3. Forq0.2/3, however, one
hasz.1, so that the exponential ansatzfh5zh is no longer
physically meaningful. Hence, in the case of detailed b
ance, the transition becomes first order at the tricritical po

p5qc51, q0* 5
2

3
. ~42!

For q0, 2
3 , the potential well is deep enough to bind th

critical interface to the wall, leading to an exponentially d
caying interface profile. Forq0. 2

3 , such a localized solution
does not exist and the transition becomes continuous.

D. Scaling properties near the tricritical point

The phase diagram forp51 is shown in Fig. 8. Using the
transfer matrix approach, we can show that the critical
g

er
-
te
si
y

04160
l-
t

-

-

havior along the second-order transition line is always
same as the one discussed in Sec. III B. However, in
vicinity of the tricritical point the scaling properties are di
ferent. Moreover, they depend on the direction from wh
the tricritical point is approached.

Let us first consider the caseq51, approaching the tric-
ritical point horizontally from the left along the first-orde
phase transition line. Using expressions~40! and ~41!, one
can compute the interface height

h̄5 (
h50

`

hr~h!5
2q0

11q026q0
21A112q023q0

2
~43!

and the squared interface width

FIG. 8. Phase diagram forp51 in the (q,q0) plane.
w25 (
h50

`

~h2h̄!2r~h!5
2„114q023q0

31~q0
223q021!A112q023q0

2
…

q0
2~113q023A112q023q0

2!2
. ~44!
s
the
ix

i-
e

Approaching the tricritical point from the left by increasin
q0, these quantities scale to lowest order ind5q0* 2q0 as

h̄5w5
1

6d
,

r~0!54d. ~45!

On the other hand, if the tricritical point is approached v
tically keepingq05q0* 52/3 fixed, a numerical diagonaliza
tion of the transfer matrix suggests that the asymptotic in
face profile crosses over from an exponential to a Gaus
decay. In this case the height, the width, and the bottom la
density are found to scale as

h̄;w;e21/3, ~46!
-

r-
an
er

r~0!;e1/3,

where e512q. Moreover, by keeping the boundary site
fixed at zero height, we can study finite-size scaling at
tricritical point. Evaluating products of the transfer matr
numerically, we find that

h̄;N1/2,

r~0!;N21/2. ~47!

Finally, numerical Monte Carlo simulations at the tricrit
cal point ~see Fig. 9! suggest that an initially flat interfac
roughens in such a way that

h̄;t1/4,

r~0!;t21/4. ~48!
6-7
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Assuming standard power law scaling, all these results
be combined in the scaling forms,

h̃~e,d,N,t !5N1/2F~ t/N2,eN3/2,dN1/2!,

r0~e,d,N,t !5N21/2G~ t/N2,eN3/2,dN1/2!, ~49!

where F and G are scaling functions with an appropria
asymptotic behavior. Again these scaling forms are con
tent with the critical exponentsz52,a51/2 of the Edwards-
Wilkinson universality class.

IV. MEAN-FIELD THEORY FOR NONEQUILIBRIUM
WETTING

Mean-field theories describe a system in an approxim
way by ignoring spatial correlations. For a given model th
are many possible types of mean-field theories, dependin
the microscopic level one is trying to describe. Previo
mean-field approaches to nonequilibrium wetting conside
the average height as the dynamical variable and studied
mean-field approximation of its dynamics. For example, i
study by Giada and Marsili@13# KPZ equation ~5! was
mapped by a Hopf-Cole transformation to a Langevin eq
tion with multiplicative noise, discretizing space and repla
ing nearest-neighbor interactions by global couplings. Us
a Morse potential with a potential well at zero height, th
were able to reproduce second- and first-order transition
well as phase coexistence. More recently, Santoset al. @14#
extended these studies, suggesting that the mean-field p
diagram does not change if fluctuations are taken into
count. Moreover, they identified a narrow domain close
the borderline between the phase coexistence region an
wet phase, where the system exhibits spatiotemporal in
mittency.

In this section, we construct mean-field equations desc
ing the temporal evolution of the height distributioncn for
height h5n. This approach is expected to yield more d

FIG. 9. Decay of the density of sites at zero height at
tricritical point q5p51, q052/3 as a function of time measured
Monte Carlo steps~MCS!. The slope of the curve tends t
20.24(1), leading to the conjecture thatr(0);t21/4.
04160
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tailed information on the structure of the interface than p
vious mean-field theories.

A. Mean-field equations

In order to construct the mean-field equations for t
height distribution, let us first consider the case of a fre
evolving interface without a wall. The rate equations descr
ing the temporal change ofcn consist of several terms cor
responding to different processes. Let us, for example, c
sider the probability that an attempted update leads to
desorption of an atom from the interior of a plateau at le
n. This probability is proportional tocn , which is the prob-
ability to find a randomly selected site at heightn. Moreover,
it depends on the heights of the nearest neighbors, which
restricted to take the values$n21,n,n11%. For simplicity,
we assume that each site has two nearest neighbor s
Clearly one can generalize it to the case where each site
2(d21) nearest neighbors. In this case one may have s
eral types of edges of corner sites, requiring a larger num
of growth rate parameters. To avoid this complication,
restrict ourselves to the case of two nearest neighbors. T
neglecting spatial correlations, the probability to find the tw
nearest neighbor sites at the heightsl,mP$n21,n,n11% is
assumed to be proportional toc lcm divided by (cn211cn
1cn11)2. For example, for evaporation from a plateau w
haven5 l 5m and thus the contribution of process~10! to
the dynamical equation ofcn is

2p
cn

3

~cn211cn1cn11!2
. ~50!

Similarly the loss of probability due to evaporation at edg
~9! is given by

2
2cn

2cn211cncn21
2

~cn211cn1cn11!2
, ~51!

while the depositon process~8! leads to a loss term of the
form

2q
cn

312cn
2cn111cncn11

2

~cn211cn1cn11!2
. ~52!

In addition, there are corresponding gain contributions at
neighboring levels such that the total probability is co
served. Collecting all terms, the mean-field equations can
written as

dcn

dt
5An2An21 , ~53!

where

An5
pcn11

3 12cncn11
2 1cn

2cn11

~cn1cn111cn12!2

2q
cn

312cn
2cn111cncn11

2

~cn211cn1cn11!2
. ~54!

e
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WETTING UNDER NONEQUILIBRIUM CONDITIONS PHYSICAL REVIEW E68, 041606 ~2003!
The hard-core wall at the bottom layer can be taken i
account by formally settingc215A2150 and replacingq
with q0 in the expression forA0, which then can be written
as

A05
pc1

312c0c1
21c0

2c1

~c01c11c2!2
2q0c0 . ~55!

B. Mean-field phase diagram

The main result of the calculations, which will be pr
sented in detail below, is the mean-field phase diagr
shown in Fig. 10 for the caseq05q. As in the
(111)-dimensional model, there is a continuous phase tr
sition from a bound to a moving phase. In calculating t
mean-field height distribution in the moving phase, it
found that the interface is localized around its average he
at any given time, representing asmoothgrowing interface.
This is expected in high dimensions, for which mean-fie
represents a reasonable approximation. Clearly, ind5111
dimensions this is not the case as discussed before.

In the bound region, two types of phases were found
the larger part of thep,q plane~denoted as SE in Fig. 10!,
the height profile decays superexponentially at large hei
In particular, it is found that for largen the profile takes the
form

cn;q2n exp~22n2a!, ~56!

wherea is a constant. In addition, another region is fou
~denoted as E in Fig. 10!, where the height distribution de
cays exponentially

cn;e2an, ~57!

wherea.0 is a constant.

FIG. 10. Mean-field phase diagram forq05q. The second-order
phase transition line is represented as a solid line. The bound p
consists of two parts, where the interface profilecn either decays
exponentially~E! or superexponentially~SE! for largen.
04160
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The superexponential behavior may be understood
considering the equilibrium case~i.e., p51) in which a (d
21)-dimensional manifold is attracted by a gravitation
force to a hard wall. The energy of a fluctuation reaching
heightn scales asnd, leading to the height distribution

cn;e2bnd
, ~58!

whereb.0 is a constant. This behavior seems to be valid
an extended nonequilibrium region of the phase diagram
shown in Fig. 7, where numerical simulations ind5211
dimensions are presented.

Numerical attempts to find signatures of a possible ex
nential phase in two and three dimensions failed since i
very difficult to obtain a reliable statistics in the tail of th
height distribution, especially in higher dimensions, whe
finite-size effects become increasingly relevant. The con
ture that the exponential phase might be related to the rou
ening transition of KPZ interfaces ind.2 could not be sub-
stantiated by numerical simulations.

C. Mean-field equations

In the stationary state, one hasA050 andAn2An2150
so thatAn vanishes for alln>0. Therefore, the stationar
mean-field equations read

05pc1
312c0c1

21c0
2c12q0c0~c01c11c2!2, ~59!

05pcn11
3 12cncn11

2 1cn
2cn112qcn~cn1cn11!2

3S cn1cn111cn12

cn211cn1cn11
D 2

, ~60!

wheren51,2, . . . ,̀ . In order to solve this equation by it
eration, it is convenient to consider quotients of success
densities,

xn5
cn

cn21
. ~61!

In terms of these variables, the stationary mean-field eq
tions take the form

05px1
312x1

21x12q0~11x11x1x2!2, ~62!

05pxn11
3 12xn11

2 1xn112q~11xn11!2

3xn
2S 11xn111xn11xn12

11xn1xnxn11
D 2

. ~63!

Bulk equation~63! can be interpreted as an iterative m
(xn ,xn11)→(xn11 ,xn12), where

xn12[ f ~xn ,xn11!5212
1

xn11

1
11xn1xnxn11

xn~11xn11!
A112xn111pxn11

2

qxn11
~64!

se
6-9
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for n51,2, . . . ,`. In addition, the initial condition for
x1 ,x2 is given by the bottom layer equation

x25212
1

x1
1A11x1~21px1!

q0x1
. ~65!

D. Stationary solutions

In order to evaluate the stationary height distribution
given p and q, one has to look for a point on the line o
possible initial conditions~65! and iterate map~64! such that
it reaches a real fixed point withx* ,1. This trajectory then
corresponds to a physical height distribution.

To proceed, we first analyze the fixed points of the m
The fixed point equation

x@qx31~2q2p!x21~q22!x21#50 ~66!

has four solutions. Two of the solutionsx0* 50 andx1* are
real in the entirep, q plane, while other two solutionsx2* ,x3*
may either be both real or complex conjugate to each ot
We denote the region in thep, q plane, wherex2* ,x3* are real,
by region III ~see Fig. 11!. We further divide the complemen
tary region III into two regions; I, wherex1* ,1, and II,
wherex1* .1. Since the bracket in Eq.~66! is equal to21 at
x50 and positive forq.0 in the limit of largex, the fixed
point x1* has to be positive.

Analyzing map~64! with initial condition ~65!, we find
that the only fixed points, which correspond to physic
height distributions, are eitherx0* or x2* when it is real. Here
x2* is the solution of Eq.~66! which satisfiesx2* ,1,x3* in
region III. In particular, we find that below the transition lin
the height distribution is controlled by the fixed pointx0*

FIG. 11. Classification of fixed points depending onp andq. In
region I ~II !, there exists only one real fixed pointx* ,1 (x*
.1), while in region III there are three real fixed points. Region
and II are separated by the straight dotted lineq5(p13)/4. The
phase transition line~solid line! crosses from region I to region I
and back into region I, as illustrated in the upper inset. The lo
inset zooms the area where the both lines enter wedge-shape
gion III.
04160
r

.

r.

l

50 in region I and by the fixed pointx2* in region III. Details
of the analysis, which led to this result, are given in t
Appendix.

We now study the stationary height profile in the tw
regions. In region I the map flows to the hyperbolic fixe
point x0* 50 along its stable trajectory. Expanding the m
for small values ofx to lowest order, this stable manifold i
described by the nonlinear relation

xn11.qxn
2 ~67!

in the limit x→0. Along this manifold, the map approache
the fixed pointx0* 50 superexponentially as

xn.
1

q
exp~22n2a! ~68!

yielding the height profile in Eq.~56!.
In region III, stationary solutions are controlled by th

fixed point x2* .0 ~see the Appendix!. Linearizing the map
around this fixed point one obtains an exponential behav

xn;e2an, ~69!

wherea.0 is a constant, leading to the exponential heig
profile ~57!.

To complete the analysis of the phase diagram, one ha
locate the wetting transition line. This is done by simulati
the dynamical mean-field equations~53! and determining the
point from where on the interface detaches. This analy
leads to the transition line shown in Fig. 10.

So far all mean-field results were obtained forq05q, i.e.,
without an attractive force between the substrate and wet
layer. Loweringq0 changes the bottom layer equation~65!
and thereby the possible starting points of the iteration.
shown in the Appendix, the mean-field approximation rep
duces the phenomenon of phase coexistence. However
like in the model in (111) dimensions, it emerges every
where along the phase transition line as soon asq0,q;
hence, there is no tricritical point. Moreover, in the limitq0
→0 the threshold for the growth rateq, where the interface
detaches, tends to infinity. Therefore, the region of ph
coexistence is not bounded from above as in the (111)
dimensional model.

V. CONCLUSIONS

In this paper we have given a detailed account of a
cently introduced solid-on-solid model for nonequilibriu
wetting, which is defined in the spirit of a KPZ equation in
potential. Introducing a hard-core wall at zero height, t
model exhibits a continuous wetting transition from a bou
to a moving phase. The model is controlled by two para
etersp and q, which effectively determine the asymptot
slope of the potential and the coefficient of the nonline
term in the KPZ equation.

For p51 the dynamical rules of the model obey detail
balance. In this case, the stationary distribution of a bou
interface is given by a Boltzmann ensemble, which allo
one to derive various quantities exactly. Moving away fro

I

r
re-
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WETTING UNDER NONEQUILIBRIUM CONDITIONS PHYSICAL REVIEW E68, 041606 ~2003!
this line, the model crosses over to a nonequilibrium beh
ior, which is characterized by different critical propertie
The model can be generalized further by including an attr
tive interaction between the substrate and the wetting la
If this force is strong enough it may turn the continuo
transition into a discontinuous one. Moreover, the bound
the moving phase may coexist in regions where the coe
cient of the nonlinear term in the KPZ equation is negati

In order to assess the behavior of the model in hig
dimensions, we have proposed a mean-field approxima
which is based on rate equations for the densities at diffe
heights. The phase diagram turns out to be surprisingly r
It turns out that the mean-field approximation reproduces
properties of the original model. However, in the movi
phase the interface remains smooth as it is expected for K
type growth in higher dimensions.

As a new feature, the mean-field approximation pred
the existence of two different regions in the bound phase
one of these regions the inteface profile decays supere
nentially with increasing height while in the other region
exponential decay is observed. This can be explained
classifying the fixed points of an iterative map for quotien
of the densities. The question to what extent this crosso
from superexponential to exponential profiles can be
served in the full model is still open.
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APPENDIX: STATIONARY SOLUTIONS
OF THE MEAN-FIELD EQUATIONS

1. Fixed points

Besidesx0* 50, Eq. ~66! has three other fixed point
which are the roots of the polynomial equation

qx31~2q2p!x21~q22!x2150. ~A1!

As shown in Fig. 11, thep,q plane can be divided into thre
different regions. In regions I and II, one fixed point is re
and two of them are complex conjugate, while in region
all fixed points are real. The boundary of region III is cha
acterized by the existence of a twofold degenerate fi
point. Comparing Eq.~A1! with a polynomial of the form
(x2a)2(x2b)50, the boundary of region III can be give
in a parameter representation by

q5
2

a2a2
, p5

113a14a2

a22a3
, b5

12a

2a
, ~A2!

where 0,a,1. The boundary has the form of a wedg
shown as a dashed line in Fig. 11. The lower branch fo
,a,1/2 and the upper branch for 1/2,a,1 terminate in
04160
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the triple point (p,q)5(8,28), where Eq.~A1! has a three-
fold degenerate fixed pointx* 51/2.

Physically meaningful stationary solutions of the iterati
map must start from a point on the line given by Eq.~62! and
have to flow towards a real fixed point with 0<x* ,1. For
this reason, we divided the complement of region III into tw
parts, namely, region I withx1* .1 and region II withx1*
,1. Both regions are separated by a straight lineq5(p
13)/4, wherex1* 51.

2. Stationary solutions in regions I and II

We first show that in regions I and II a physically mea
ingful stationary solution always flows to the fixed poi
x0* 50. To this end we show that the other real fixed pointx1*
is either larger than 1 or unstable.

As shown in the upper inset of Fig. 11, the phase tran
tion line starts atp50 in region I, crosses into region II a
the pointq5p51, and then crosses back into region I at t
point (p,q)'(5.380,2.095). Obviously, the fixed pointx1*
can only be physically meaningful between these two cro
ing points, wherex1* ,1. However, in this intervalx1* turns
out to be unstable. To demonstrate this point we consider
eigenvalues of the Jacobian of the mapxn125 f (xn ,xn11) in
Eq. ~64!,

l1,25
1

2 S ] f

]xn11
6AS ] f

]xn11
D 2

14
] f

]xn
D U

xn5xn115x*
.

~A3!

Using Eq.~A1!, the partial derivatives can be expressed a

] f

]xn
U

xn5xn115x*
52

1

x* 2
,

] f

]xn11
U

xn5xn115x*

5
qx* 412qx* 312~q21!x* 21~3q22!x* 22

2qx* 3~x* 11!
.

~A4!

FIG. 12. Stationary solutions in region I: Superstable manif
of the fixed pointx0* 50 for p52 and different values ofq in
regions I and II. Forq,qc , the manifold~bold line! intersects the
dashed line of possible initial conditions~65!, representing a sta
tionary solution in the bound phase, where the bottom layer den
c0 is positive. Approachingqc, this intersection point moves to
infinity and c0 tends to zero. Forq.qc , the superstable manifold
originates in the other real fixed point so that no stationary solu
exists. Similar graphs are also obtained for other values ofp in
regions I and II.
6-11
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Along the dotted line in Fig. 11, wherex* 51, the two ei-
genvalues

l1,2ux* 51512
1

4q
~36A9224q! ~A5!

are complex conjugate in the interval between the two cro
ing points 1,q,5.380. As can be verified numerically, the
are also complex conjugate in a neighborhood of this li
which includes the phase transition line. Since the deter
nant of the Jacobian

l1l25
1

x* 2
~A6!

is larger than 1 forx* ,1, the fixed pointx1* is found to be
unstable. Thus we can conclude that physically meanin
stationary solutions in regions I and II are always control
by the fixed pointx0* 50.

Since forx* →0 the two eigenvalues tend tol150 and
l252`, the fixed pointx0* 50 is nonlinear and hyperbolic
It has superstable manifold which in the limit ofx→0 is
given byxn115qxn

2 . This manifold is shown in Fig. 12 fo
different values ofq below, at, and above the critical poin
As it can be seen, a stationary solution exists if the manif
intersects the line of possible initial conditions~65!.

3. Stationary solutions in region III

In the wedge-shaped region III, there are three real fi
pointsx1* ,x2* ,x3* . The first one is smaller than 1 and u
stable, while the second one is smaller than 1 and hy
bolic. The properties ofx3* depend onp and q. Below the
dotted line in Fig. 11, it is larger than 1 and stable, while it
smaller than 1 and unstable above.

Figure 13 illustrates typical situations atp560 for various
values ofq, crossing region III from bottom to top. Below
the wedge in region I@panel~a!#, the stationary solution can

FIG. 13. Fixed points~bullets! and possible stationary solution
~bold lines! for p560 inside for~a! q512.0, ~b! q513.5, and~c!
q5qc.15.644. The figure is explained in the text.
,
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be constructed in the same way as before. Entering regio
from below @panel ~b!#, two new real fixed pointsx1* ,x2*
,1 emerge, which are fully unstable and hyperbolic, resp
tively. The superstable manifold of the fixed pointx0* 50
now originates inx1* , while it is the linearly stable manifold
of the hyperbolic fixed pointx2* which intersects the dashe
line of possible initial conditions~65!. As before, the inter-
section point moves continuously to infinity asq approaches
the critical point@panel ~c!#. Thus the unbinding transition
manifests itself in the same way as in regions I and II,
only difference being that the physically relevant stab
manifold is now controlled by the hyperbolic fixed pointx2

.0 instead ofx0* 50. The linear stability ofx2* is respon-
sible for the purely exponential profile observed in regionE.

4. Phase coexistence in regions I and II

Lowering q0 changes the line of possible initial cond
tions ~65!, while the stable manifold of the fixed pointx0*
50 remains the same. The typical situation forp50.8 is
shown in Fig. 14. The left panel shows the stable manif
~solid line! and the bottom layer equation~dashed line! with-
out attractive force at the critical pointq05q5qc.0.943.
Both curves approach each other smoothly and intersec
infinity so that the transition is continuous. The right pan
shows the same situation in the presence of an attrac
force for q050.5. Accordingly, the effect of loweringq0 is
to move the dashed line of possible initial conditions upwa
such that it intersects the critical stable manifold at a cert
finite point. This means that the bottom layer densityc0 is
finite at the critical point, making the transition first orde
Moreover, a stationary solution still exists even ifq is in-
creased, proving the possibility of phase coexistence in
mean-field equations. Increasingq beyond a certain thresh
old, a stationary solution no longer exists. This defines
upper boundary of the phase coexistence region in the m
field phase diagram.

FIG. 14. Phase coexistence in the mean-field approximation
p50.8 ~see text!.
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